Optimization model for maintenance packaging allocations

José Nogueira da Mata Filho *Advisor* Prof. Dr. Fernando Teixeira Mendes Abrahão

AeroLogLab ITA Instituto Tecnólogico de Aeronáutica

3º Encontro de Confiabilidade na Aviação November 23, 2022

Maintenance Optimization

< □ > < 同 > < 三 >

1 Introduction

Motivation Problem Analysis Research Proposal

2 Literature Review

Solutions and features

Contribution of this Study

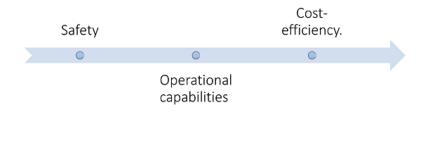
3 Method

Maths

4 Results and Discussion

Preparation for Tests

< A


Tests

6 Conclusion

6 Referencing

< E

The maintenance strategy, established during the product development phase, is considered one of the strategic factors for a complex system's high productivity.

Nogueira (ITA)

Image: A mage: A ma

- Stakeholders Needs
 - An organized and flexible maintenance plan.
 - Tasks distributed in a way (packages) that minimize the maintenance costs, maximize fleet availability.
 - Conforming to safety constraints
 - Proactive identification of improvements
 - A decision support system to optimize the maintenance planning

Inefficient preventive maintenace consequences

- Increase in downtime and decline in profit margin
- Possible Disruption of the flight network
- Losses on Investment Return
- Decrease in Future sales and in the reputation of the aircraft market

<u>Inaccurate Method</u> for maintenance plan development and <u>absence of continuous data analysis</u> resulting in a conservative maintenance plan

Researchers recognize the critical role played by inaccuracy in the methodologies used to define the preventive maintenance intervals.

- [Liu et al. 2006]
- [Ahmadi *et al.* 2010]
- [America, A. (2015)] \rightarrow "good engineering judgment"

Conservative Maintenance Plan

Aircraft Task Interval Escalation

Efforts that benefit airlines by lowering costs and downtime after several years of operation show the opportunity of improvements .

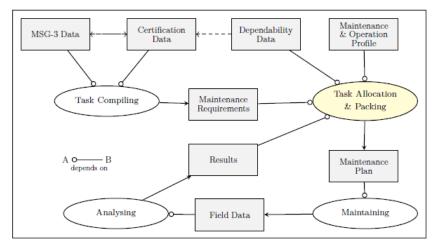
Boeing's B737 aircraft interval escalation (2004-2005):

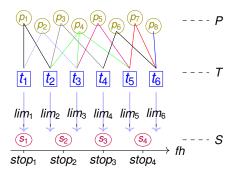
Table: Estimated maintenance savings over 20 years

Parameters	Savings
Labor- hour per airplane	2,586
Cost Savings per airplane	\$ 155,193
Downtime gained	40 days
Revenue per airplane	\$1,097,120

ightarrow USD 25,046,400

Problem Specification

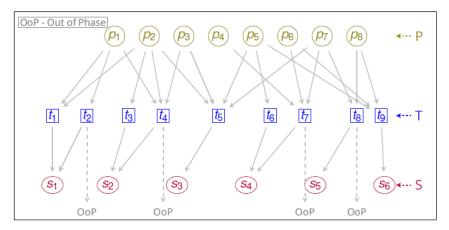



Figure: Task Allocation Problem

Nogi	Jeira	(ITA)	
11050	acina	(1179	

Problem Details - Maintenance Packages

- $T = \{1, 2, 3..., |T|\} \rightarrow$ Maintenance Tasks indexed by *j*. • $P = \{1, 2, 3..., |P|\} \rightarrow$ Preparation Tasks indexed by *k*
- $S = \{1, 2, 3..., |S|\} \rightarrow$ Packages indexed by *i*


- **1** Task T_j is assigned to package S_i if $stop_i \le lim_j$
- p_k can be necessary to one or more tasks T_j S_i will be composed of one or more task T_j

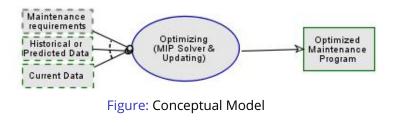
3 1 4 3

Problem Details -Packaging and Out of Phase Tasks

- \bullet Group tasks \rightarrow increase availability
- But some tasks are expected to be planned as Out Of Phase (OOP)

Figure: Task Allocation Problem

		◆□▶◆□▶◆□▶◆□▶ □ クタの
Nogueira (ITA)	Maintenance Optimization	November 23, 2022 10/37


Create and test a model to generate optimum and resilient maintenance plans that consider the effects of packaging, the likelihood of failures, and continuous updating capability to meet the needs of stakeholders.

- H1 Gains in efficiency (same safety level)
- H2 Responsiveness
- H3 Learning capability

イロト イボト イヨト イヨト

Conceptual Model

- optimization module receives information from maintenance requirements
- MIP Solver finds the optimal allocation of tasks
- The Updating mechanism adapts the planner based on the current data

Nogueira	(ITA)
----------	-------

イロト イボト イヨト イヨト

Literature Review

Table: Literature, solution methods and features

	Obje	Objectives		Methods		Features		
Approach by	Min Cost	Max Avail	IP	Heu	Life phase	Op Cost	Prob CM	Packing gain
[Muchiri <i>et al.</i> (2009)]				·	0			·
[Holzel <i>et al.</i> (2012)]				·	0	$\overline{}$		
[Li <i>et al.</i> (2015)]					0			·
[Senturk <i>et al.</i> (2018)]	\Box			·	0			
[Witteman <i>et al.</i> (2021)]					0			·
[Lee <i>et al.</i> (2022)]				·	0			·
This work					D + O			-
■ completely	🖸 par	tially	00	operat	ional	<i>D</i> dev	elopm	ent
IP inte	ger pro	ogramr	ning	He	u heuri		ヨトメヨ	▶ <u></u>
Nogueira (ITA)		Maintena	ance Op	otimizatior	ı	Nov	ember 23, 2	

This study adds to existing researches the integration of important parameters to find a optimal solution for the task allocation problem:

- MSG-3 and maintainability task analysis data (labor, access data, preparation and follow-on activities)
- Probability of failures and associated costs.
- savings as a result of task packaging
- opportunity cost due to aircraft unavailability
- Study of using the field or design data to make maintenance plan resilient.

4 E 6 4 E 6

Objective Function

Minimize :

$$\left\{ \left[\sum_{i=1}^{n} \sum_{j=1}^{t} x_{ij} * (pmtc_j + \sum_{q=1}^{n(B_i)} prepc_q) * Q_i \right] + \left[\sum_{j=1}^{m} E_j * cmtc_j * Q_i \right] \right\}$$
(1)

$$Q_i = \frac{T_{max}}{stop_i} \tag{2}$$

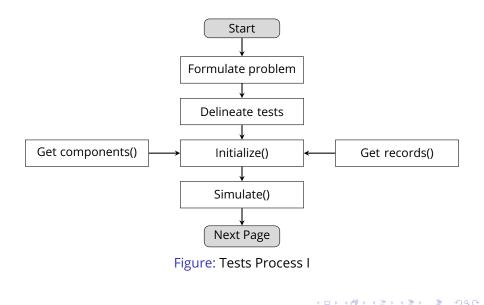
$$E_j = \sum_{j=1}^t x_{ij} * \frac{1}{T} \int_0^T \lambda_j(t) dt * stop_i$$
(3)

Nogueira (ITA)

æ

<ロ> < 回 > < 回 > < 回 > < 回 >

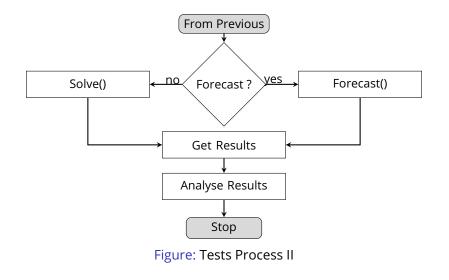
task maximum limit must be equal or greater than the package interval


$$X_{ij}*lim_j >= X_{ij}*stop_i, \text{ for } j \in \{1, 2, 3, \dots, m\}, \text{ for } i \in \{1, 2, 3, \dots, n\}$$
 (4)

Preparation tasks are not duplicated in the package

$$\sum_{i=1}^{n} P_{k} = 1, \text{ for } k \in \{1, 2, 3, \dots, p\}$$
(5)

Nogueira (ITA)
------------	------


イロト イボト イヨト イヨト

	Nog	ueira	(ITA)
--	-----	-------	-------

Maintenance Optimization

November 23, 2022 18/37

Nogueira	(ITA)
----------	-------

Maintenance Optimization

November 23, 2022 19/37

3

<ロ> < 回 > < 回 > < 回 > < 回 >

- \bullet First validation tests \rightarrow Microsoft Excel solvers.
- \bullet Remaining tests \rightarrow Python 3 MIP solver.

The MIP solver used in this work was the Branch and Cut developed and maintained by [Forrest *et al.* 2020] as well as Python 3, with the following libraries:

- numpy: [Harris et al. 2020]
- pandas: [McKinney et al. 2010]

4 3 5 4 3 5

Constants

- OCD = 70,000.00, daily OC (USD), [Senturk et al. (2018)]
- OHD = 8, operating hours per day
- $HOC = \lfloor \frac{OCD}{OHD} \rfloor$, hourly OC
- *MHC* = 70.00, man-hour cost (USD)
- *CMF* = 3.0, corrective maintenance factor.

A supervised learning method will be used to predict and update the constants and input data to supply the Mixed Integer Programming (MIP) solver with maintenance parameters.

A B + A B +

- Items considered as good as new after(AGAN) maintenance.
- Failures are evident FEC 6 and FEC 7 as per MSG-3 analysis.
- items are replaced in event of failure and during the inspection
- All tasks should be included in one of the pre-defined packages
- Resources limitations are not considered
- Downtime calculation considers one specialist per task

Table: Components List

ltem	Description	λ_j	lim _j	mat _j	mh _j	Aj
comp ₁	Starter generator	1.56E-04	1000	518.316	2.63	[2 3 5 12]
$comp_2$	Fuel Pump	7.74E-04	1500	387.319	3.28	[2 3 5 7 9 10]
comp ₃	Main Battery	8.55E-04	300	564.245	2.71	[2 5 11 13]
$comp_4$	Ejection Pump	7.74E-04	3000	185.569	3.80	[2 3 5 7 8 14 15 16
comp ₅	Hydraulic pump	3.33E-05	4500	158.253	4.60	[2 3 5 13]
comp ₆	Engine	1.00E-05	4800	152.667	11.06	[2 3 6 12 13]
comp ₇	Hydraulic Check Valve	1.37E-05	1000	329.771	0.97	[4 10 1]
compi						[]
comp ₈₆	Spoiler Actuator	3.42E-05	400	154.656	1.17	[15 9 13]

э

(日) (四) (三) (三)

Table: Comparison

	<i>T</i> ₁	item ₁	item ₂	item ₃	item ₄	item ₅	item ₆	Cpi	α_i
T1	300	0	0	1	0	0	0	12046.00	1.0
T2	900	1	0	0	0	0	0	11690.35	1.0
Т3	1500	0	1	0	0	0	0	14579.60	1.0
T4	3000	0	0	0	1	0	0	16891,00	1.0
T5	4500	0	0	0	0	1	0	20447.00	1.0
T6	4800	0	0	0	0	0	1	49161.70	1.0
	<i>T</i> ₁	item ₁	item ₂	item ₃	item ₄	item ₅	item ₆	Cpi	α_i
T1	300	0	0	1	0	0	0	12046.00	1.0
T2	900	1	0	0	0	0	0	11690.40	1.0
T3	1500	0	1	0	1	0	0	23336.30	0.742
T4	3000	0	0	0	0	0	0	-	-
T5	4500	0	0	0	0	1	1	69897.30	0.961
T6	4800	0	0	0	0	0	0	-	-

Nogueira (ITA)

Maintenance Optimization

November 23, 2022 24/37

Model Validation II

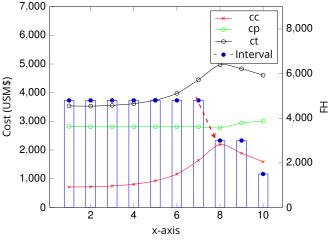
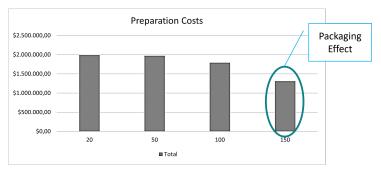


Figure: Sensitivity Test - 1

Packaging Effect

Figure: Packaging Economy Validation.


N	lnσι	leira	a (l	TA)	
11	iugu	1CII C	ון ג	17)	

Maintenance Optimization

November 23, 2022 26/37

→ 3 → < 3</p>

< A >

Figure: Preparation costs for different steps

э

イロト イボト イヨト イヨト

Corrective Costs

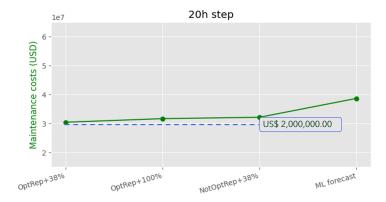
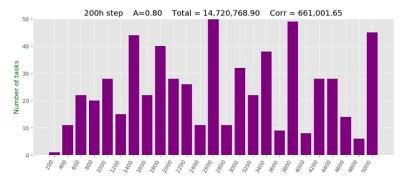


Figure: Influence of Corrective Cost - 20h steps


ueira	

Maintenance Optimization

November 23, 2022 28/37

э

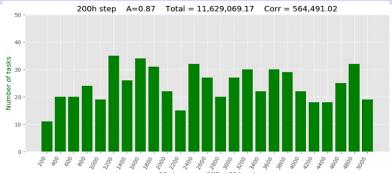

Optimization Effects I

Figure: 200-hour Steps Tasks Distribution Without Optimization

∃ >

Optimization Effects II

Figure: 200-hour Steps Tasks Distribution With Optimization

Status	A_0	Total Cost	Corrective Cost
Not Optimized	80%	\$ 14,720,768.90	\$ 661,001.65
Optimized	87%	\$ 11,629,069.17	\$ 564,491.02
Gain	7%	\$ 3.091.699,20	\$ 96.510,63

Nogueira (ITA)

Maintenance Optimization

- Grouping activities using the optimization model saves total maintenance expenses.
- Proposed model performs betterthan other traditional maintenance planner methods regarding costs and availability.
- An interactive framework able to provide integration between different actors, can allow complex systems to remain resilient throughout their respective life cycles.

- 1 ML for estimations based on maintenance records
- 2 Use of system monitoring capabilities to update the maintenance plan
- Process to include OOP task in the IVHM
- ④ Evaluation of the model using three different operators` flight and maintenance profiles.
- Inclusion the consideration to use the overnight period in the optimization.

医下颌 医下

This study was financed in part by the *Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)* – Finance Code 001.

3 1 4 3

The End

Questions? Comments?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References I

- Ahmadi, A.; Soderholm, P.; Kumar, U. On aircraft scheduled maintenance program development. in: **Journal of Quality in Maintenance Engineering**.ISSN 1355-2511.
- America, A. for. Airlines for America (A4A) MSG-3: Operator/Manufacturer Scheduled Maintenance Development. Transport Association of America, Inc. Copyright (c) 2015, 2015. Disponível em: ¡http://www.airlines.org.;
- FORREST, J., S.VIGERSKE, H., T.RALPHS, L.HAFER, B.K.JANSSON, J.P.FASANO, E.STRAVER, M.LUBIN, R.LOUGEE; J.P.GONCAL, H.I.GASSMANN, SALTZ-MAN, M. CoIN–OR CBC version 2.10.5. —, Zenodo, https://doi.org/10.5281/zenodo.3700700. 2020.

HARRIS, C., MILLMAN, K., WALT, S. vander. **Array programming with NumPy**. [S.I.]: Nature, 2020. 357–362 p.

HOLZEL, Nico B. et al. A maintenance packaging and scheduling optimization method for future aircraft. In: Air Transport and Operations. IOS Press, 2012. p. 343-353.

< ロ > < 同 > < 三 > < 三 > <

References II

- Lee, J., de Pater, I., Boekweit, S., , Mitici, M. (2022, June). Remaining-Useful-Life prognostics for opportunistic grouping of maintenance of landing gear brakes for a fleet of aircraft. In PHM Society European Conference (Vol. 7, No. 1, pp. 278-285).
- Li, H., Zuo, H., Lei, D., Liang, K., Lu, T. Optimal Combination of Aircraft Maintenance Tasks by a Novel Simplex Optimization Method. Math. Probl. Eng. 2015, 1–19 (2015).
- Liu, M., ZUO, H.F., Ni, X.C., Cai, J. Research on a case-based decision support system for aircraft maintenance review board report. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, 2006. ISBN 3-540-37271-7.

MCKINNEY, W. Data structures for statistical computing in Python. In: **Data structures for statistical computing in Python**. 2010.

Muchiri, A. K. (2009). Maintenance planning optimisation for the Boeing 737 next generation. Delft University of Technology.

くロ とく 御 とく ヨ とく ヨ とう

- Senturk, C., Ozkol, I. The effects of the use of single task-oriented maintenance concept and more accurate letter check alternatives on the reduction of scheduled maintenance downtime of aircraft. Int. J. Mech. Eng. Robot. Res. 7, 189–196 (2018).
 - Witteman, M., Deng, Q., Santos, B. F. A bin packing approach to solve the aircraft maintenance task allocation problem. Eur J Oper Res 294, 365–376 (2021).

3 3 → 4 3